A Variance Reduced Stochastic Newton Method

نویسندگان

  • Aurélien Lucchi
  • Brian McWilliams
  • Thomas Hofmann
چکیده

Quasi-Newton methods are widely used in practise for convex loss minimization problems. These methods exhibit good empirical performance on a wide variety of tasks and enjoy super-linear convergence to the optimal solution. For largescale learning problems, stochastic Quasi-Newton methods have been recently proposed. However, these typically only achieve sub-linear convergence rates and have not been shown to consistently perform well in practice since noisy Hessian approximations can exacerbate the effect of high-variance stochastic gradient estimates. In this work we propose VITE, a novel stochastic Quasi-Newton algorithm that uses an existing first-order technique to reduce this variance. Without exploiting the specific form of the approximate Hessian, we show that VITE reaches the optimum at a geometric rate with a constant step-size when dealing with smooth strongly convex functions. Empirically, we demonstrate improvements over existing stochastic Quasi-Newton and variance reduced stochastic gradient methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Variance-Reduced Cubic Regularized Newton Method

We propose a stochastic variance-reduced cubic regularized Newton method for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an ( , √ )-approximately local minimum within Õ(n/ ) second-order oracl...

متن کامل

Stochastic Variance Reduction for Policy Gradient Estimation

Recent advances in policy gradient methods and deep learning have demonstrated their applicability for complex reinforcement learning problems. However, the variance of the performance gradient estimates obtained from the simulation is often excessive, leading to poor sample efficiency. In this paper, we apply the stochastic variance reduced gradient descent (SVRG) technique [1] to model-free p...

متن کامل

Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis

Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite number of loss functions. The present paper proposes a Riemannian stochastic quasi-Newton algorithm with variance reduction (R-SQN-VR). The key challenges of averaging, adding, and subtracting multiple gradients are addressed with notions of retraction and vector transport. We...

متن کامل

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that noisy information about the gradients of the objective function is available via a stochastic first-order oracle (SFO). We propose a general framework for such methods, for which we prove almost sure convergence to stationary points and analyze its worst-case iteration complexity. ...

متن کامل

Sample Complexity of Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization

The popular cubic regularization (CR) method converges with firstand second-order optimality guarantee for nonconvex optimization, but encounters a high sample complexity issue for solving large-scale problems. Various sub-sampling variants of CR have been proposed to improve the sample complexity. In this paper, we propose a stochastic variance-reduced cubic-regularized (SVRC) Newton’s method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.08316  شماره 

صفحات  -

تاریخ انتشار 2015